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1. Introduction 

A thin spherical layer of an incompressible, inviscid fluid 

which is held on the surface S of a rotating ball by gravitation 

can be taken for some purposes as an approximation to the Earth's 

atmosphere. An investigation of the two dimensional vortical 

motion in such a layer should be useful for the understanding of 

certain observed meteorological phenomena.  For example, it appears 

that the analysis of large scale closed isobaric systems can be 

based on a knowledge of the paths of concentrated vortices. 

This report presents a study of the vortical motion which is 

due to the existence of concentrated vortices (normal to S) which 

are confined to a polar cap and subject to a boundary condition 

along a circle of latitude. 

We assume that the ieparture of the free outer surface of the 

layer from an  equilibrium position is small; and that the tangen- 

tial acceleration is negligible compared with the Coriolis force. 

We also assume that the variation of the Coriolis force with lati- 

tude can be neglected  In other words, we study geostrophic vor- 

tices on a sphere as contrasted wie i geostrophic vortices on a 

plane. The latter have been discussed by several authors in 

connection with the motion in a rotating planar tangential layer 

as an approximation to the motion in a thin layer of fluid covering 

a rotating ball.  References can be found in the paper by 

Morikawa, [1] . 

The main result is the system of nonlinear equations for the 

paths of the vortices. These are used to study the linear stabil- 

ity of the motion of n vortices which are symmetrically arranged 
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along a circle of latitude in a cap with or without a polar vortex, 

One of the boundary conditions imposed requires the velocity to 

the north to be zero along the circle which bounds the cap; and 

the other requires the velocity to the east to be constant along 

the boundary.  The investigation is restricted to analytical 

results which include a formula for linear stability for the case 

in which the polar vortex is either held fixed or else has zero 

strength.  Numerical computations, which are necessary for 

decisions about the linear and nonlinear stability of given con- 

figurations of vortices, will be discussed in another report.  See 

Leiva, [2], 
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2. Equations of Motion 

Let p denote the distance of a point from the center of a 

ball E of large radius a which rotates with constant angular 

velocity üü about a polar axis.  Let (j) and 6 denote respectively 

the longitude and the colatitude of a point on the rotating 

spherical surface S of E.  Let p = a and p = a + h^e, t) represent 

two surfaces which contain an incompressible, inviscid fluid which 

is gravitationally attracted by E.  Suppose h is small compared 

with a. 

The velocity of a fluid particle relative to S is defined by 

the components 

u = (p sin 6) At - tangential component toward the east, 

_p ^. = tangential component toward the north, 

H£ ■ radial component. 

v = 

w = 

If the only body force acting is that due to the gravitational 

potential G of E, then the basic hydrodynamicai equations which 

define the motion of the fluid relative to S are the continuity 

equation 

öu  b{v  sin 6) = o 

end the momentum equations 

du _  uv  cot e  + ^ +  2a)W  sin e  -  2a)v  cos  0  = -  6   p  ^in ^ ^ i *>! 

or 

tfBta 
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dv      vw      u    cot e + 2(ÜU cos  e =    1 1  . 
cIT       p p &

0P  de 

2 2 i    ^Pi 

TT       p p &o    p 

In these equations the differential operator with respect to the 

time means 

d = Ö .    u    ä  I Jt + w ^- . 
TE ~ "5^  p sin B ^      p  dB dp 

The symbol 6  denotes the constant density of the fluid; and p 

stands for the pressure in 

b  p cu sin 6 
p1 = p+5oG - -2 ^  

which can be referred to as a modified pressure. 

Since h is supposed to be small compared with the large 

radius a of E; and since 

w(i'.0,a,t) = 0 

let us neglect the radial velocity and the radial variation of u 

and v.  Let us assume that G = gp where g is a constant; and that 

the centrifugal effects manifested by the partial derivatives of 

5 P
2

'JD
2
 sin2e 0      can be ignored.  Let us also assume that the motion 

is such that the nonlinear terms in the tangential momentum equa- 

tions can be neglected; and that the radial momentum equation can 

be replaced with the hydrostatic law 

p((j),e,p,t) = gPio(h + a-p) 

which satisfies the condition that the pressure is zero at the free 

surface p = a+h. 

*m* 
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Under the above assumption sind wl^h the notation 

u((j),e, t) = u((t),e,a,v) , 

v(4),e,t) = v(<t),0,a,t) ; 

an approximation to  the motion is  determined by  the  equations 

(2.1) 15p + a s 
1 fäu Mv sin 6) 

 38  =  0  ; 

(2.2) |^ -   2ü)V  cos   6  = 
g äh   , 

a sin  0 "§(£ * 

(2.5) |+2mu  cose.f* 

An integration  of  (2.1)  gives 

h 
w(fM,a+h,t)  - a sin g 

^(v  sin Ö) 
IB" 

du 

The kinematic condition at the free surface is 

dh w(^0,a+h,t) = ^ 

and hence 

(2.4) 
dh             h ^(v  sin 0) 
dt       a sin 0 be 

We suppose now that h{^,6,t)   is always close to the constant value 

h .  Then if we introduce o 

h -h 
n(M*t) = —5-2 

a linearization of (2.4) yields 



(2.5) ^t !: a sin B 
^(v sin 9)       h\x 

5^      ^ 

while the momentum equations become 

(2.6) 

(2.7) 

SI - 2CüV cos S a 
6no 
sin T U i 

+ 2a)U cos 0 6ho 
a $■ 

Unless  stated otherwise,   we assume  in what  follows  that ct) is not 

zero. 

I 
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3, Geostrophic Vortices 

If we neglect the variation of the Coriolis force with lati- 

tude  and take 

CO cos e = a) cos e, « (o^ 1 

then the last equations of Section 2 reduce to 

(3.1) 
1 ä(v  sin e) 

'It       a sin Ö dö 

Tsn       -    ~                gho       fci   . 

$     0   -     gho ön 

(3.2) 

(5.5) 

Hereafter we confine ourselves to a study of these equations.  As 

will be explained in the sequel, they lead to what are called geo- 

strophic vortices. 

The  elimination of r\  from   (3.2)  and   (3.5)  gives 

(3.4) 

The  quantity 

* r    1 
"5^    a sin B 

ä(u sin g)   .   ^v 
 36 ^ ■ ^t 

^  " a sin B 
^(u sin 6)   ,   ^v 

3^ ^ 

is  the  radial component  of vorticity;   and by  integration of  (3.4) 

we have 

(3.?) a s WÜ 
d(u sin 6)   .   hv 
 5S + ^ = 2üo1Ti+U't>>0.O) -2a)iTl(^0'O)   ' 

k. ^. MM^^^U rtnta 



This implies that we  can use  (5.5)»   (3.2)  and   (3.3) as a basic set 

of equations  instead  of  (3.1);   (3.2)  and   (3.3). 

Equations   (3.2)   and  (3.3)   imply 

(3.6) i^ + ^a 
&tz    i 

and 

(3.7) 9^ 

g* 
a 

gh 
Ü 

2cul S '  sin 5  5tS 

2a) 

2   ' 

CTfflj + "&& 

If these are used  to eliminate u and v from   (3.5)»   we  find 

(3.8) 1      hc 

^"^     ** TIT; i?" ^ ^ + ^ 

2o a 2a3 
= -gjP [C(4.«,0) -20^^(^0,0)] 

? 
a 2Q 

-THr^(*'e) 

The theory of Laplace transforms can be used to show that the 

steady state solution of (3.8) is such that 

(3.9) i^njonCM.t) = i'ib>6) 

where Tp must  satisfy 

(3.10) sTrTT "5^ sin 6 i   r* 
T7T72 

4a2ü)?V 

7^ S2  '    ""^ a2c*(^e) 

The  function ^ does not  depend on t and the  associated time  inde- 

pendent velocity components are 

8 
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(3.11) u = L^vU.e.t) =||| ; 

(3.12) v = Lt^a,o,t) = —^ H . 

Note that (3.10) is a consequence of the equations (3.11), (3.12) 

and the vorticity equation 

kaSf 

In other words, (3.10) is implied by (3.5); (3.2) and (3.3) when 

we ignore inertial forces. 

We are interested in the solution of (3*10) when the 

vorticity C*(<1>,e) Is constant in a small neighborhood of a point 

(^*,Ö*) and zero elsewhere.  This solution, as is well known, can 

be derived from the solution of the idealized equation which comes 

from (3.10) when £*(<{>, 0) is assumed to represent a vortex of 

strength pi concentrated at the arbitrary point (i,©). For this 

reason we are going to begin with the mathematical interpretation 

defined by 

a2u5((t>-^1)5(e-01) 
a2[C(ie,o) -200^(^,0,0) = a^C (M) = 2 n  

-L a sin 0., 

where 5 symbolizes the Dirac delta function.  Hence the basic equa- 

tion to be solved is 

^    1  .2   4a2a)^  M-^M^^-V 
(3.^) ^^ineH + ;^^--1^ =  sin B1 ' 



r 
The motion in a thin planar layer of fluid tangential to the 

surface of the Earth is often used as an approximation to the 

actual motion of the Earth's atmosphere in the neighborhood of the 

point of tangency.  For surh  an approximation the analogues of 

(3.11); (3.12) and (3.l4) are 

(3.15) 

(3.16) 

and 

(3.17) 

u = ä 
%> 

v  1 &X V "7^ ' 

i n>ru + *ri   ^ix. ^Ith^Iil 
r [^r- + ^J - -gH;        r1 

In terms of the polar coordinates  (r,^),   these  show that x must 

satisfy 

(3.18) 7 ^ r ^r + ^ Tjt " "gH- " ^ r" H 

The only physically admissible solution of (3.18) is 

203-, 

(3.19) = - ^ K 
2ir  o 'gh 

i / r2 + r^ - 2rr1 cos (i-^) 

o 

where K [  ] denotes the zeroth order modified Bessel function of 

the second kind.  This defines what is called a geostrophic vortex, 

The motion of various configurations of such vortices has been 

studied by several authors, notably G. K. Morikawa [1], [3] whose 

papers contain detailed explanations and references.  In keeping 

with what seems to be accepted terminology we can say that (3.1^) 

10 
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defines a geostrophic vortex on a sphere. 

Our object now is to investigate the nature of the solution 

of (3.14) when oo is not zero.  This equation can be written as 

i  *     *,/,   1  A n5((t)-<l)1)5(e-e1) 

sin '6  hfy 

where 
4a)?a2 

(3.21) v(v+l) = - -g^— • 

The solution of (3.20) can be inferred from the solution of 

This equation defines the Legendre functions of degree v.  Its 

general solution can be expressed in the form 

f =  c1P (-cos e)+c2Pv(cos 9) 

when v is neither zero nor an integer as in the case when v is 

defined by (3.21) from which 

v = - •£ + iq 

where 
i =7=1 ; 

1 / l6ü)la2  1 1 :^/-gv' 

and CD, ^ 0.  In the neighborhood of the north pole Pv(cos 6) is 

continuous and P (l) - 1; but in this neighborhood 

11 
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P (-COS 9)   m   -P     1 (-COS 6) 
+ iq 

00 

behaves like 

cos qx dx 
= — cosh qir / —- 

J  /2(cosh x - cos 6) 

P (-cos 0) ~ —  • ^n e . 

This suggests that if a vortex is concentrated at {^,6^;   if d^^ 

is the geodesic distance from this point to an arbitrary point 

(1,6)  on Si   and if a-, is the angle o1 = d^a, then the fundamental 

solution of (:*.i20) is 

h  si^VTT Pv(-C0S öl) H ^ sin TTV 

-cos 0  cos 0- 

-sin 0 sin 01 cos (l»-*}^) 

It can now be verified by direct substitution that 

(3.22) *  =4 sinvTT Pv(-C0S öl) 

does indeed satisfy (3.2ü).  Furthermore, computations with the 

velocity components 

TI   M-    ö 
u " 4a sin VTT 'SS  ^v 

P (-cos a, ) ; 
v      1 

v -      ^ , S- P (-cos a-, )  ; v  4a sin B sin VTT ^J V
V
     1' ' 

show that in the neighborhood of {^.B^,   (3.22) defines a vortical 

motion; but the vortex point itself remains at rest - it possesses 

no autonomous motion.  In fact it can be shown that 

12 

■M^HM 



L T T^  P  (-cos  a-, ) a^-oo  4  sm VTT    v 1 

2a) 
=  - 4L K 

/HZ 
-   I 1~ 2rri    C0S    (^"^l) 

Hence we  can say that   (5.22)   represents a geostrophic vortex on a 

rotating sphere  in the  same way  as we  say  that 

X ■ 7^ K %r     c 

2a)-,    pö p  
  ir   +ri'"2rri  cos   (*"▼!) 
'gh 

represents a geostrophic  vortex on a rotating plane. 

For an arbitrary distribution of n+1 vortices  on the  sphere 

the   function f,   a stream  function is 

1 n 

TI/ = m , 3       M-^P (-cos  a.) r       4  sin VTT 4^    J vv j 

where a. = d./a and d. is the geodesic distance on S from the 
J   J       J 

point of concentration of the j-th vortex, (^,6.), to an arbitrary 

point (^,6). That is, 

cos a^ = cos S cos e,+sin B  sin 0, cos (^-(j).) . 

The associated velocity field is given by 

" - i H - re-äcrgy^^jV-''" "A ■' 

V  = a s 
J , M = _ —i_—| ^- f^"- u, .P  (-cos  a .)! 
TrTT ^|      4a sin  B  sin VTT ^\ I 4^ ^J  v v J' J 

The path of the k-th vortex  is  along a stream  line, 

13 
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(^(xjy) = const), and its velocity is equal to the velocity at 

{L,6)  due to all of the other vortices.  Therefore since 

U = a sin 6 $' V = -a d0 IT 

the equations for the motion of (^,,»6. ) are 

and 

ha.  sin 6  sin vir 

n 

cTT  ^  
4a sin 6  sin vrr 

JA 

JA 

6=6,. 

H 
0=0, 

If the motion is confined to a part D of the sphere S, 

boundary conditions must be imposed; ard it is not then possible, 

in general, to express ^ as a finite sum of terms of the type 
M- • 

7!——r-jl  P (-cos a.).  When D is a cap bounded by a circle of 4 sin VTT v      j r        * 
latitude we have a case which is important for applications to 

certain meteorological phenomena. The assumption that the 

Coriolis force is independent of latitude decreases in severity as 

the latitude of the boundary circle of the cap increases. 

Ih 
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4. Geostrophlc Vortices In a Cap 

Suppose that n+1 concentrated geostrophlc vortices exist In 

the cap which covers the north pole and Is bounded by th; circle 

of colatltude 0 = A.  Suppose that along this boundary circle the 

velocity  - the north Is zero.  In order to study the motion of 

the vortices we need the stream function which satisfies 

C*-1'     JZTT-se isin e) 
Bill 0 hfy 

= y— _J J J_ 
sin Bj 

J 
for 

O<0,0.<A;   0<(i>,|). <&r; 
—   J J 

with the boundary conditions 

(4.2) 

or 

(4.3) 

v(<M) = s ^(^^) ■ 0 

^(♦,X) = c 

The solution of (4.1) subject to (4.3) can be expressed In 

the form 

-cos 0 cos 0 

(4.4) ^,0)=bPv(cos0)+7rTT^ gjuj 
'J 

-sin 0 sin 0 . cos (^-i.) 
J       J 

+ . 1 \— n. 5  C (m,A)l;n(cos 0)E^(cos0.)cosm((t)-(t>.) 

lr; 

k.       -^ 



where ^(x) is the spherical harmonic of degree v £md order m. 

This function satisfies 

iL (i-x2) * i?(x)+ v(v+i) Hx dx v 
m 

1-x 
^(x) = 0 
V 

smd  is  such that 

^(D  " 
1 ,       m = 0 

0 ,       m ^ 0  . 

^(x)  can also be  expressed  in terms  of Pv(x).     We  have 

(4.5) 
n   m/5   d1"?   (x) 

J?{X)  -   (-if (l-x2)m/2 

dx 

The expansion 

P  [-cos  6 cos  6. -sin 6  sin 0.  cos   (^-^j)] 

where 

and 

oo 
e  ^(cos  0.)i^(-co8  0)  cos m(^-(t).) 
'm vv J    v 

0<e,<e<Tr;       kiki  real 

= 1 , 

'm 
,   -, \m 2r (v-m+3 ) 

■ ^-1)    r(v +¥rr7 ' m  > 0  , 

P°(x) = Pv(x)  ; 

shows that the boundary condition (4.5) is satisfied if we take 

16 
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b   -   P   (cos   A) 
V 

and 
A-cos  A) 

C   (in,A)  = -£„ -^     • 
v m  ^(cos  A) 

V 

It  can be  shown that  the   solution   (4.4)  is unique;   and that  it  is 

analytic  in the  cap minus  the vortex points. 

If instead of  (4.3)  we  impose  the boundary  condition 

(4.6) Ve(<M)  = c  , 

which means that the velocity to the east is kept constant along 

the boundary circle of the cap, then (4.4) again provides the solu- 

tion if we now take 

sin APV (cos A) 

and 

^'(-cos A) 
v v  

^'(cos A) 
C (m,A) = e^ 
v        m 

where  P111  (x)  denotes  the  derivative  of  PHx). v v 

The  series which appear  in  (4.4)  can be  summed  if  the  cap  is 

the  northern hemisphere.     For  this  case  A  = TT/2  and 

Cv(»^) 'I'm   - 

Then since 

oo 
(4.7) 3     e iHcos e)Fpi(cos 9.) cos m(4-AJ 

m^ü    mv v i ^TYJ/ 

■ P  [cos  6   cos 6    - sin 6   sin 6 .   cos   (i-^.)] 
V J J J 

17 
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0 < 9,6.  < TT  ;       6 +6. < w  ;       ^^ real ; 
J J 

we see that 

n 
(4.8) ^(^e)=bp (cose)+7riT^7 r:M.tjpv 

-cos 6 cos 6 
.1 

-sin 6 sin 6   cos(|>-(|).) 

n 

'  --^ Z^ ^jPv 

cos 0 cos 6 
J 

-sin 6 sin 0 . cos ($-<{>.) 

where for the boundary condition 

f(*,|) - c 

the upper sign is to be taken with 

b = TrfüT' 
while for 

^(«l» » 7) = c 

the lower sign is to be taken with 

b = - 
Pv(0) 

Notice that P [-cos 6 cos e .- sine sin0 . cos (^-(j).)] is singular at 

(^,e) = {^.,0   )  and Pv [cos e cos 6- sine sin 0^ cos (i))-^)] is singu- 

lar at (M) = {>..*■-e-).  It follows from the form of (4.8) that 

that solution can be constructed from the fundamental solution 

i  p [-cos e cos e - sin 6  sin 6 cos (^-i,)] 
4 sin VTT v 

18 
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by using a process of reflection across A = Tr/2, A reflection 

technique for the construction of the solution for a cap other 

than  a hemisphere  is unknown when v  ^ 0. 

If v  = 0,   that is  if üü = 0,   then  (4.1)  reduces  to 

(4.9) sin 5 "58 sin 6 rrf = X-^ -"—sin ö, * 
sin 6  ä^) j=0 

This  equation possesses the  fundamental  solution 

^ £n a2|tan2 | +  tan2 -^ - 2  tan | tan -^ cos   (♦-♦j)J 

= ^ Re   £n a tan £ e  *-  tan -^. e     J 

Let us also remark that if we employ the transformation 

0\ ii z = (a tan •^)e Y = x + ly 

then the problem of solving (4.9) subject to 0 < 6 < A and a 

boundary condition can be transformed into the problem of solving 

s!| + s!|. n 

ox"  ^y   j=0 
p. .5(x-x )5(y-yj) 

subject to 0 < yx2 + yy < R and a corresponding boundary condition, 

See Peters, [4"j . The latter equation, as is well known, governs 

the motion of rectilinear vortices; and for many cases it -an be 

solved by using reflection techniques. 

The velocity field defined by the stream function (4.4) is 

given by 
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^     I 

U = sin 6  k m S 

4a    sin V7r«sin 6*^ = 4  sin VTT = -4b  sin vTT'Sin e.p  (cos  0) 

n 
kL.P' 
^J   V 

-cos 6 cos 6 

-sin 6 sin 6   cos (^-i .) 

sin 6 cos 0 

-cos 6 sin 6. cos {$-$.) 

n oo t 
-  sin 0 y~' n, T~~ C   (m,A)P^   (cos  P)F(cos 0.)cos m^-i-) 

J feu    vV'""'   "v J 

and 

V = -a 0 = 1        d 
a sin 0 

St 

.2   _. a   A       i.   .._   .._   d' -4a    sin VTT«sin 0*0 = 4  sin VTT 
dip 

n 

J v 

-cos 0 cos  0 

• sin 0  sin 9.  cos   (^-^) 

• sin 0  sin 0.   sin  (i-i .) 
J J 

n oo 
ii. 5       C   (m,>,)F(cos  0)Fn(cos  0 . )m sin m(^-^)   . 

J ^=0    v v v J J 

The   following equations  determine the motion of  the vortex 

at   (^Ök): 
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(4.10)    4a2  sin vTr-sin B  \ = -4b  sin VTT  sin ©^(cos  ek) 

n 
H.P' 

J v 

-cos 6   cos 6 . 

-sin 6^ sin 9. cos (^"♦j) 

sin 6   cos Ö. 

-cos 6.  sin 6 . cos (i,-(^ .) 

n CX3 

-  sin 0k a. 2_ C   (m,A)^,(cos  e^F^cos  6  ) C08m(^-^)   , 
K  j^Ü    J  in=0    v 

(4.11)    -4a    s.     VTfsin ek
,p

k = 

n 

J  v 

jVk 

-cos 6   cos 0 . 
K J 

-sin ek sin©   cos (^-•t'j) 

. sin 9k  sin 9.  sin  (i^-4j) 

n_ oo 
,_ C  (n,X)^(co8  ek)^(cos ej)msinin(^-^)   . 

■J^ü    J  m= 

Suppose now that one vortex of  strength n0 is  at  the  north 

pole  and  that n   (n  > 2)   others  each of strength n,   are   Symmetrie 

ally  situated  on a circle  of latitude within the  cap.     In other 

words,   suppose  that 

(♦0,e0) - U0,o) , 

while 

u.    = M-^ ^o o 

27r (♦.,6.)  =   ((d-D f-.-Y) T d j  = 1,2,...,n 

Hj  -H y 
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where 

0 < 7 < A . 

For this configuration the velocity to the north of the polar 

vortex is determined by 

n 
•eo = ^ ^ pv(-cos "v) sin 'rsin (

<
PO"

<
P.I
) 

o Tj 

n  oo        ^(cos 0 ) ,.  i x 
sin ST  v o YJ 

Using (4.5) we find 

-4a2 sin V7r-eo = \i T~  P^(cos y)  sin -y sin (^-^j) 

n 
- \i C (1,X)P'(1)PV(C08 7) sin 7 sin (♦0-i;j) 

From this we see that 

6 = 0 o 

because 

sin U0-fj) = IZ sin [^ - (J-1) ^] - 0 n 

The velocity to the north of any one of the vortiocs on the 

circle of colatituae 7 is given by 
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-4a    sin vTr.sin 7'ek 

M- P* [-cos27 - sin27  cos   (k-j) ^]sln 7  sin   (k-j) — 

J'A 
n      OD 2Tr 

p. ;       >       Cv(m,A)[I^(cos 7)]    msinm (k-j) —  . 

In this  expression each of  the  sums with respect to j has   the  form 

n 

JA 

STTT,,,, 27r 
^[cos   (k-j) ^-]sin   (k-j)m^- 

This sum is equal to zero and so we find that 

ek = 0 ' 

The velocity to the east  of any one  of the vortices  on the 

circle  0  = 7  is given by 

4a    sin vir»k. ■ -4b sin vnV(cos 7) 

+ kL0[P^(-cos 7) -Cv(0,A)P^(cos 7)] 

n-1 STTI., 2 . -rr 
+ H Y~ P^-cos^ - sin 7  cos 0 -pj-]2  cos 7   sin J - 

n      00 
-  H C   fm,X)I^  (cos -^^^(cos 7)  cos jm — 

=1 m=c 

■ 4a    sin VTMO  . 
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We have now shown that if at time t = 0 one vortex of 

strength \i    is at the north pole and the others of strength M- 

occupy the positions 

then the polar vortex stays at the north pole while the others 

remain on the circle of colatitude 6=7 and each moves along it 

with constant angular velocity O.  The strengths n0 and a  can be 

chosen so that 0-0.  On the other hand, if n0 and \L  are pre- 

scribed it may be possible (depending on the boundary condition) 

to choose b .and 7 so that the vortices are stationary. 
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5.   Linear Stability Equations 

The motion of the vox uices  described in the  last  section  is 

given by 

(*O,0O)  =  (^0) 

(5.1) 
2v (ij*ej) ■ ((J-1) ~+nt,7)  .       J - 1*2,...,n  . 

In order to investigate the stability of this motion consider a 

second sec of vortices with one member of strength n0 situated at 

(5.2) (W " ^o^^ 
and with the others of strength p. situated at 

(5.3) 
27r (fj,eJ = (a. + Cj-l) ^.+Ot,7+ßj) ,   J - 1,2, ...,n 

Suppose that at t = 0 the quantities a., j = 1,2, ...,n; and ß^, 

j = 0,1,2,...,n, are small.  If these quantities remain small as 

time goes on then the second set of vortices will always be close 

to the first set (5.1). A condition for linear stability can be 

found if we can linearize the equations which result when the 

coordinates of the second set of vortices are substituted in the 

motion equations (4.10) and (4.11).  The linearization cannot be 

performed directly because ao need not be small in order to have 

the second set of vortices near the first set.  However, it follows 

from our supposition that 
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O     O       O      J I 
;     > J = 1,2, ...,n 

y =ß sin a    ß. 

are small at t = 0; and linearization with respect to these 

quantities is sufficient for the purpose of developing a linear 

stability criterion. 

After somewhat lengthy computations the linear stability 

equations turn out to be: 

{5.4)  q^ie-mr,,) = (A0-B0 f^ sln
2J ^)y0 

n 

o n   o 

n 
+ Cn(7) YZ  0j cos (J"1) ^■ + CÖ(7) r^ P. sin (J-1) S.  , J 

2jr 
n 

n-1 
.2, 2rr (5.5)  q^Yo+Ox^ = -(Ao-Bo^; cos^j ^)xo 

+ C0(7) C »j sin (J-1) ^-C;(7) VZ ßj cos (j-1) ^ , n 

(5.6) -q1 sin 7.ßk = ^ Co(7)[xo sin (k-l) ^ - yo cos (k-1) ^] 

jA      JA 

^o „» / Nr..  .._ /,. ^ 2rr . __  _.„ /,. , x 27r- (5.7)  q! sin 7.ak = - ^ c;(7)[xo cos (k-l) ^- + yo sin (k-l) -£] 

n n 
_ ^a . + Y_  CkjPj C,,^. + Cß, 

Jfftc       JA 

where 
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^1 
= 4a2 sin VTT 

\i 

A 
4b sin VTT 

= 4b  sin VTT  p,(1)+llo pl(l)[C   (0,A) -C   (1,A)P'(1)] 
|i, v u.     v V v v 

+ n[Cv(0,A)P^(l)Pv(cos -y) 

+  2C   (2,A)P,^(l)P^(cos y) -P^(-cos  y)   cos 7]   , 

B0  =   sin2
7[P;(-oos  y) +4Cv(2,A)P;(l)P;(cos y)]   , 

C   (7)  = P'C-COB 7)   sin 7 -Cv(l,A)P^(l)P^(cos 7)   sin 7  , 

^ 

2ir 
P^-cos y.A  sin 7  cos 7  sin   (k-j) — 

OTT 

+  P"(-cos 7k1)2 sin57  cos 7  sin  (k-j) ^ sin  (k-j) — 

ÖD I OTT 

+  sin 7 -XZ C   (m,A)p'T1(cos 7)^   (cos 7)111 sin  [in(k-j) —]   , 
m=. 

2w 
BVH " pö(-cos -Ywi)  sin 7 cos   (k-J) "n ^kj 'kj 

11 ^ OTT 

+  P"(-cos 7ki)   sin 7  sin  (k-j) — rkJ 

00 2 _2 .x Sr- 
C   (in,A)[^n(cos 7)]     m^  cos   [m(k-j) —]   , 

2Tr- 

'kj 
-P't-cos 7   . )»[sin 7 + cos 7  cos   (k-j) —1 

+  P"(-cos 7k,.).sin227 • sin   (k-j) 21 

+  sin27 .7"" C   (m,>v)[P^l(cos 7)]2  cos   [in(k-j) —]   , 
m=( 
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c = 4b  sinvTT  p^^^   sin27 

+ -^ sin2
7[P;(-cos y) +Cv(0,A)P;(cos y)] 

+ IZ {Pv(-cos V  cos  J ^■ + Pv(-C0S "Vj)   sin22^ -s^J H] 

+ JZ ZZ cv(
m^)IV (cos ^^Pv^03 7) Bln<y cos mj ^ 

j=l ni=0 

oo ,        p    p 
+ H^ Cu(in,X)[PJ (cos 7)r sin 7 , 
m= 

n p p-T»- 

cos 7  = cos 7 + sin 7 • cos (k-j) — , 

p p P71- 
. = cos -y + sin 7 coz  J — 

The linear system (5.^)-(5.7) has constant coefficients. 

Therefore the investigation of the stability of the solution of 

the solution of the system cam be started by substituting 

st        st      w St „   ,.  st 
-oJ > \ = \e ' yo ■ boe ' \ = V x^ = a^e , a,   = et^e  , yo = be , ß = b,.e  for the variables. 

This substitution leads to the characteristic determinant which 

theoretically could be studied in the usual way; but it is clear 

that the required analysis for the general case would be too 

complicated to allow the deduction of a practicable formula for 

linear stability.  If a free polar vortex is involved with two or 

more other vortices it is best to subject the characteristic 

matrix to numerical analysis.  C. Leiva, [2], is doing this and he 

is analyzing the results for the case in which the cap coincides 

with the northern hemisphere. 

When the polar vortex is either absent or kept fixed, the 

system (5.4)-(5.7) simplifies so much that the development of a 
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linear stability formula becomes feasible.  If the polar vortex is 

absent, then p. = 0.  If the polar vortex is present but con- 

strained to remain at the pole, then xo = yo = 0.  Hence for either 

of these cases our system reduces to 

where 
.             4a    sin VTT • sin -y q2 = q1  sin 7  = 1  . 

For reasons  stated above,   let us  devote  the  remaining analysis  in 

this paper to the   system  (5.8),   (5-9)  and  its  implications. 

Summations  show that   (5.8),   (5.9)  possess  two  invariants 

given by 

n    . 
(5.10) i^ = 0 

and 

(5.11) ^ S ^ ■ (C+D) 5e 

whe re 

D = 
n 

> c,,,. 

-,     / -F1 (-cos  -v .)• (sin -y+COS -y   COS   j  —-) 
n-1   (      v ' J ' n 

+  p"(-cos y.)   sin 27  sin j ^ 

in2
7 IZZi: Cv(m,A)[P^   (cos y)]*  cos mj ^  . 
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From  (5.10)  and   (5.11)  we  obtain 

n 

\ " ^2^1 

and 
n 

y~ ak =  (C+D)n^1t +ni2 

where  ^,   etnd ^p  are  small quantities.     If we  set 

\ = \ + Ml 

we  see  that 

(5.12) 

ak = ak + (C+D)^1
t+ ^2 

n 
ßk =  0  , 

(5.13) 
n 

\ 
=  0 

and we find that p. sind a, must again satisfy the same equations 

as ß, and a satisfy, namely the system (5«8)> (5«9). In matrix 

form,   we have 

(5.14) 

a     13 

$>     a 
+ q. 

W 

/ z  \ 

= 0 . 

Now if we  take 

ßu    = bke      , 
~        ~    st 
ak = ake 

then  (5.14)   reduces  to 
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(5.15) 

(a    73 

t    a] V 

[\\ 
A 

+  q2S i . 

K 
=  0 

Here  the  submatrices  (X,    ß  and   & are  right  circulant nxn 

matrices.     It can be  shown that  the  characteristic  roots are given 

by 

q2s1(£)  = -A(|)  + /-B(£)E(£)   1 

It -= 1,2, ...,n ; 

q2s2(£)   =  -A(|)   - /-B(£)E(£) ^ 

(5.16) 

where 

n 

^=^V 
l(J-K)^ 

jVk 

p' 
v 

n-1 

2Tr P  (-cos 7 .) sin 7 cos 7 sin j— ■> 

  „„ , \   „    .   3 .   2 . TT    .     . 27r ■ i >_^   I + P' (-cos 7 .) «2 sin 7 cos 7 sin j — sin J — 

■ X' _. 1 277- 
+ ^       C   (m,A)F (cos 7)?^    (COS7) sin7 . m sin Jm — 

rn=l    v v 

■   sin ji ^ 

which is  a pure  imaginary;   while 

n 
B(|) = ET' B J.-'"-"*] 

jA 

n-1 

T^I / \   J   2 . 27r P^(-cos 7j)sin 7C0S j — 

(1-cos Jl^)  I +P^(-cos7   )sin47Sin2j ^ 

GO 

^   m= 

2   2 27r 
+ E~; Cv(m,A)[Pj'(cos7)]   m   cos jm — 

and 
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w^z; 

Kit) =C+^:ckJe 

= 4b  sln V7r  P"(cos7)sin2-y 

M.« 2 
+ _£ sin 7[PJ(-C08 7)+ Cv(0, X)Pj(co87)] 

n-1 f Jv("COS7j)[cosJ?L" (sin2'V+ cos27cos J^)cos J^—^ 

J^1 (+ P^(-cos7   ) sin227sin4j^.(l+ cos J£ ^) 

+ 7^" ^~ C   (m,A)I^(cos 7)F^   (cos^) sin 7C0S jm — 

o       0       00 mi p 2Tr Sir 
+  sin 7 >~; ^ C   (in,A)[F   (CO87)]    cos jm—cos J£ — 

3^T H^5 v 

are real. 

Since a,, 0, are supposed to be small at t = 0, the quanti- 
k.  K 

ties a, , ?L must be small at t = 0.  We define the motion given by 

(5.1) to be linearly stable if o^, ^k remain small as time 

increases. Then, in order to have linear stability it is necessary 

that the real parts of the roots (5.l6) be less than or equal to 

zero.  Since A(l) is a pure imaginary, it follows that 

(5.17) B(l)E{|) > 0 

is a necessary condition for linear stability.  In other words, 

each root of the set (5.l6) must be a pure imaginary number.  With 

this condition satisfied we still need to consider the possible 

appearance of multiple roots in the set (5.l6).  For example if 

£ = n then A(n) = 0; B(n) = 0; and consequently there is at least 
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a double root present.  Presumably this means instability since 

the multiple zero root indicates solutions of (5.1^) which have 

m-1 the form t '  .  However, if the zero root is just a double root it 

can be shown that solutions a,, (3^. which in part depend linearly 

on t are precluded by the invariants (5,12) and (5.13). 

We notice of course that 

has a part which depends linearly on t.  This is a reflection of 

the fact that if the vortices (3.1) are slightly displaced, then 

the angular velocity 0(7) will change by a small amount. The 

quantity (C+D) is equal to 

C+D = 4a sin VTT • sin 7 -jr- . 

Double roots other than a double zero root may imply 

instability. 

If u =0 the expectation is that at least one domain of 
o 

linear stability is the cap: 

0 ^ 7 < A  < A . 

In fact, if \i    has the same sign as 11, and the polar vortex is 

kept fixed, then an investigation of the signs of 

B(i), EU),   I,  =  l,....n-l ; 

shows that the product B{i)E{z)  is positi-v e (no matter what n is) 

provided 7 is sufficiently small.  It is interesting to note that 
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for the case of a ring of Bessel vortices the linear stability 

condition is not satisfied for the neighborhood of the origin if 

n > 8.  The boundary angle 0 = As can be approximately determined 

by computing B(i) and E(i) for various values of 7.  For any given 

case this would require considerable numerical analysis. As an 

example of what is involved we turn to the case of three vortices 

on a circle of latitude. 

^ 
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6, Three Vortices on a Circle of Latitude In a Cap.  Polar Vortex 

Fixed or Absent 

Our Intention Is to devote the rest of this paper to a 

discussion of the case of three vortices of equal strength n. 

symmetrically situated on a circle of colatltude 0 _< 0 < A. When 

It Is admitted, a polar vortex of strength p. Is assumed to be 

held fixed at the north pole.  We are Interested In the linear 

stability of motion of the vortices whose positions at any time t 

are given by 

(A ,eJ ■ (4) ,o) , To o    To 

(•t^ej) » ((J-D ^+Ot,7) ,   J - 1,2,3 . 

Our primary object here is not to present an extended numerical 

analysis; but rather to record the quar ities which need to be 

evaluated for such an analysis. 

The angular velocity of the vortices in the equilibrium 

position is given by 

o 
//-   -, \    4a sin VTT    _       -4b  sin vrr     n'/„^     ^ lo»1) «O = •Pv(cos7) 

M- 
+  -j£   [Pv(-C0S   7)  -CV(0,A)P^(COS   -y)] 

i 2        1? 
+ 3P  (-cos 7 +T~ sin 7)«cos 7 

00 m« m O 

- HZ C
v(

m'A)  v   (C0S lK(C0S 7)-(l + 2  cos m ^)   . 

For the present  case   of three vortices we  find 
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B(l)  = B(2)  = B , 

E(l)  = E(2)  = E 

where 

(6.2)    B = - | P  (-cos2^ +^ sin2
7)   sin2^ 

+ J P"(-cos 7+^ sin 7)  sin ^ 

- 3 5~; C   (in,X)[I^{coi y)]2 m2 cos m ^ 
m=l    v v ^ 

and 

(6.7]    E.»bslnvir.^(coa7)  sin27 

+ -j2 [P^(-cos 7) +CV(0,ä)PJ(COS -y)]   sin^ 

-z 2       12 2 
- ^ P^(-oos y +.£ sin 7)  cos 7 

+   9   P^(-cos2
7 +^ sin2

7)   sin227 

+  sin2
7 'T~ C   {m,-K)Fft[{cos -y)^   (cos 7)«(l + 2 cos m ~) 

m= 

CD 

V 
^ uua   7 ; • ^ x x c   v,'jo   in   -^r-; 

+ sin 7 • )       C   (in,A)[F    (cos 7)]   (1 - COB m TT)   . v "  T' 

For £ = 3, B(5) = E(3) = 0. Ihis means a double zero root in the 

set (5.16) for three vortices. There are no other multiple roots 

and hence  the  linear  stpbility criterion is 

(6.4) B(i)EU)   > 0 ,       1-1,2 

or 
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(6.5) BE  >  0   . 

If  (6.5)  holds  then the component periods  of the motion about 

the equilibrium position are given by 

Bli)    . A(l) ti/BE =  1 o 

where 

(6.6)    iA(l) = | P^(-cos2
7 +| sin2

7)   sin 7 cos 7 

+ 2 P"(-cos2
7+^ sin2

7)   sin5
7  cos 7 

00 _, jri I 

+ A sin7 J2' C   (m,A)PJ;(cos 7)P'    (cos 7)msin 
2TT 

mT 

m=i 
and 

A(2)  = -A(l)   . 

Recall  that  if  the boundary  condition  is 

then 

b = P  (cos  Aj  ' 

P   (-cos   A) 
Cv(0'A) " "  PV

(COS X)     ' 

, ^.     Pm(-cos  A) 
r   fm A)  -  -2(-l)m r v -m+1    .   v  n ^ o 
Cv(in'A)  "    2(   1)    r(v+m+li     ^(cos  x) 

If the boundary condition is 

then 
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b = - 
sin A P'^COF  A) 

V 

P1 (-COS   A) 
Cv(0,A)   =v  , 

V Pv(cos  A) 

nf      ^ 0/   , x* r(v-B+l)      ^   (-COS   A) ,A 

If the  cap coincides with the  sphere  then 

b  =  0 ;       C   (m,7r)  = 0  . 

Some  ideas about the  effects  of imposing a boundary  condition for 

an arbitrary  cap can be  drawn from a comparison  of  the motion con- 

fined to the northern hemisphere with the  free motion on the whole 

sphere.     If the  cap  is  the northern hemisphere  then 

Cjmtl) = x ?;  - + em  , 

-o = 1  ' 

_ 9(   nm r(v -m-1) 
" 2['1)    r(v +m+l)   ' em =   (-1)   „):. riAi , 

and the series which appear in the above expressions can be summed 

by using (4.7).  We find that for X - » ; 
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(6#7) 4a sin vir .n .. -4b sin vir , p. (cos 7) 
n 

+ _2 [p^-cos 7) ± P^(cos y)] 

+ 5? (-COS -y +T- 8ln 7) COS 7 

2 , 1 „.2 ± [2?' (cos 27) + P^(cos 7 +^ sin 7)] cos 7 , 

(6.8)  iA(l) = I P^(-cos27 +^ sin27) sin 7 cos 7 

+ 2 P"(-cos27+^ sin27) sin57 cos 7 

I  [p'(cos27 +? sin 7) 

- i P"vcos27+i sin27)   sin27] isin7C0S7   , ? N 

A(2)   =  -A(l)   , 

(6.9)    B = - I P^(-cos27 +i sin27)   sin27 

+ I P^(-cos27 +^ sin27)   sin\ 

2    . 1   -.-2 ±   [P1 (cos 7 +7 sin 7) 

- I P"(cos27 +^ sin2
7)   sin27l  | sin 7 , ? N 
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(6.10) E =   P  (cos -v )  sin -v 

+ -j^ [PJC-COB 7)^PJ(C08 -y)]   sin2
7 

^ P^(-cos2
7 +-? sin 7)  cos57 

+ X Pl'(-cos2
7+i sin2

7)  sin2^ 1^ 

/p'(cos  27)2 sin27+P"(cos  2^)2  sin 27 

-   P^(cos27+^ sin27)(2-^ cos27)       ) 

+ P"(cos27+i sin27) •-i sin227 

If the boundary  condition is 

V(4>,5)  = c 

the upper sign is to be taken with 

b = ^TöT 

If the boundary condition is 

V'gU , J) = 

the lower sign is to be taken with 

b = - 
PTO)' 
v v 

A numerical analysis for the caps 
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0    <    6    <   TT 

and 
0  < 6  < -2 

will be presented  in  a separate  report by C.   Leiva  [2]. 

For  the arbitrary cap 

0   <   0   <  A   < ^ 

eac h series which appears  in the  expressions   (6.1),   (6.2)   and  (6.6) 

can be  approximated by the   sum of  its first n  terms.    Various 

methods  can be used to estimate  the error involved.     One method is 

to use  the  formula 

2 -m/2   r1 i 
.,    ^       f  nmr(v -^1) .^(X) , U-f 1  /     (t-x)m-1Pv(t)dt 
(6.ii)     (-1)   r(v +m+i)   N^  ;        rlmj       J v 

Pv^)     ,l-x.m/2 
= fTi+TT * lT+^; 

x<T<l;      m > 1 

and the  formula 
p (*)       ix"1/2        1 

(6.12) (-1)    p(v lrn+i)   [-Fv   (XJJ fTmJ     ^l+xy i"? 

m ^ 2 

in conjunction with 

,   . ^m r(v -m+1)  = cosh qrr       < 

(6.15) ^--^    r(v +m+l) ""     7rr^(o)prn,(o) 

For example,   consider the   series which appears   in the  expressi 
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for O,   namely 

oo 

m=v    v 
Cv(m,A)pJ1,(cos 7)^(cos 7)(l + 2 cos m ^) 

Let  the  boundary condition be 

so that 

P  (-cos  A) 
v 

P  (cos Aj 

Cv(in,A)  = 

nv+ni+lj   ^(cos   A) 
m ^ 0 . 

If So^   the  sum of the  first  two  terms,   is used  to approximate 

we have 

s      y-      6 cosh gr yJSS. ^(-cos A)  ^'(cos ^^(cos 7) 

2    2— " ^          n=5 ^'(cos A)             P^rn,(0)P5rn(0) 

Then from the formulas (6.11) and (6.12) we find 

,     +2  A   .     2 7,5m 
(cot    « tan    ^) 

P (cos  A)[P (0)]2 fe? 
v v 

7r(S0-^) 
<    5 co'sh qT   <  Pv(-C0S  M[Pv(cos 7)]2 g  (cot2 | tan2 J)^ 

Since 

^  = cot ^ tan ^ < 1 

we  obtain 
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12 , TrCSp-d)   Pv(-cos A)[Pv(coc 1)]   C 

 """ : 772 ' ~   IE b cosh q-rr ir0 
P (cos A)[P)(0)]^  1-C i ^ 

2.12 

v v       v 

This shows that 2Z - öD as C - 1, which means that O is large 

when the vortices on the latitude circle are close to the boandary 

circle.  It also shows that 

as 7 - 0. A similar analysis can be applied to the infinite sums 

in (6.2), (6.3) and (6.6). 
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